3.5.74 \(\int (a+b \sinh ^2(e+f x))^{3/2} \tanh ^4(e+f x) \, dx\) [474]

Optimal. Leaf size=305 \[ -\frac {(3 a-8 b) \cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}-\frac {8 (a-2 b) E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(3 a-8 b) F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {8 (a-2 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 f}+\frac {(a-2 b) \sinh ^2(e+f x) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{f}-\frac {\left (a+b \sinh ^2(e+f x)\right )^{3/2} \tanh ^3(e+f x)}{3 f} \]

[Out]

-1/3*(3*a-8*b)*cosh(f*x+e)*sinh(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/f-8/3*(a-2*b)*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+
sinh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)
^2)^(1/2)/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)+1/3*(3*a-8*b)*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+
e)^2)^(1/2)*EllipticF(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)
/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)+8/3*(a-2*b)*(a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)/f+(a-2*b)*sin
h(f*x+e)^2*(a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)/f-1/3*(a+b*sinh(f*x+e)^2)^(3/2)*tanh(f*x+e)^3/f

________________________________________________________________________________________

Rubi [A]
time = 0.26, antiderivative size = 305, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3275, 478, 591, 596, 545, 429, 506, 422} \begin {gather*} \frac {(3 a-8 b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{3 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {8 (a-2 b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{3 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {\tanh ^3(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{3 f}+\frac {(a-2 b) \sinh ^2(e+f x) \tanh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{f}+\frac {8 (a-2 b) \tanh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}-\frac {(3 a-8 b) \sinh (e+f x) \cosh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sinh[e + f*x]^2)^(3/2)*Tanh[e + f*x]^4,x]

[Out]

-1/3*((3*a - 8*b)*Cosh[e + f*x]*Sinh[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/f - (8*(a - 2*b)*EllipticE[ArcTan[S
inh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e +
f*x]^2))/a]) + ((3*a - 8*b)*EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2
])/(3*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) + (8*(a - 2*b)*Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e +
 f*x])/(3*f) + ((a - 2*b)*Sinh[e + f*x]^2*Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x])/f - ((a + b*Sinh[e + f*x]
^2)^(3/2)*Tanh[e + f*x]^3)/(3*f)

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*n*(p + 1))), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 591

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*b*g*n*(p + 1))), x] + Dis
t[1/(a*b*n*(p + 1)), Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + (b*e - a*f)*(
m + 1)) + d*(b*e*n*(p + 1) + (b*e - a*f)*(m + n*q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x]
&& IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] &&  !(EqQ[q, 1] && SimplerQ[b*c - a*d, b*e - a*f])

Rule 596

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q +
 1) + 1))), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rule 3275

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff^(m + 1)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[x^m*((a + b*ff^2*
x^2)^p/(1 - ff^2*x^2)^((m + 1)/2)), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \left (a+b \sinh ^2(e+f x)\right )^{3/2} \tanh ^4(e+f x) \, dx &=\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^4 \left (a+b x^2\right )^{3/2}}{\left (1+x^2\right )^{5/2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac {\left (a+b \sinh ^2(e+f x)\right )^{3/2} \tanh ^3(e+f x)}{3 f}+\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^2 \sqrt {a+b x^2} \left (3 a+6 b x^2\right )}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=\frac {(a-2 b) \sinh ^2(e+f x) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{f}-\frac {\left (a+b \sinh ^2(e+f x)\right )^{3/2} \tanh ^3(e+f x)}{3 f}-\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^2 \left (6 a (a-3 b)+3 (3 a-8 b) b x^2\right )}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac {(3 a-8 b) \cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}+\frac {(a-2 b) \sinh ^2(e+f x) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{f}-\frac {\left (a+b \sinh ^2(e+f x)\right )^{3/2} \tanh ^3(e+f x)}{3 f}+\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {3 a (3 a-8 b) b+24 (a-2 b) b^2 x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{9 b f}\\ &=-\frac {(3 a-8 b) \cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}+\frac {(a-2 b) \sinh ^2(e+f x) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{f}-\frac {\left (a+b \sinh ^2(e+f x)\right )^{3/2} \tanh ^3(e+f x)}{3 f}+\frac {\left (a (3 a-8 b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 f}+\frac {\left (8 (a-2 b) b \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac {(3 a-8 b) \cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}+\frac {(3 a-8 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {8 (a-2 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 f}+\frac {(a-2 b) \sinh ^2(e+f x) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{f}-\frac {\left (a+b \sinh ^2(e+f x)\right )^{3/2} \tanh ^3(e+f x)}{3 f}-\frac {\left (8 (a-2 b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac {(3 a-8 b) \cosh (e+f x) \sinh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}-\frac {8 (a-2 b) E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(3 a-8 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {8 (a-2 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 f}+\frac {(a-2 b) \sinh ^2(e+f x) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{f}-\frac {\left (a+b \sinh ^2(e+f x)\right )^{3/2} \tanh ^3(e+f x)}{3 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 2.01, size = 224, normalized size = 0.73 \begin {gather*} \frac {-32 i a (a-2 b) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} E\left (i (e+f x)\left |\frac {b}{a}\right .\right )+4 i a (5 a-8 b) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} F\left (i (e+f x)\left |\frac {b}{a}\right .\right )-\frac {\left (32 a^2-108 a b+18 b^2+\left (64 a^2-160 a b+17 b^2\right ) \cosh (2 (e+f x))+2 (6 a-17 b) b \cosh (4 (e+f x))-b^2 \cosh (6 (e+f x))\right ) \text {sech}^2(e+f x) \tanh (e+f x)}{4 \sqrt {2}}}{12 f \sqrt {2 a-b+b \cosh (2 (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sinh[e + f*x]^2)^(3/2)*Tanh[e + f*x]^4,x]

[Out]

((-32*I)*a*(a - 2*b)*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] + (4*I)*a*(5*a - 8*b)
*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticF[I*(e + f*x), b/a] - ((32*a^2 - 108*a*b + 18*b^2 + (64*a^2 -
 160*a*b + 17*b^2)*Cosh[2*(e + f*x)] + 2*(6*a - 17*b)*b*Cosh[4*(e + f*x)] - b^2*Cosh[6*(e + f*x)])*Sech[e + f*
x]^2*Tanh[e + f*x])/(4*Sqrt[2]))/(12*f*Sqrt[2*a - b + b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]
time = 1.77, size = 385, normalized size = 1.26

method result size
default \(\frac {\sqrt {-\frac {b}{a}}\, b^{2} \left (\cosh ^{6}\left (f x +e \right )\right ) \sinh \left (f x +e \right )+\left (-3 \sqrt {-\frac {b}{a}}\, a b +7 \sqrt {-\frac {b}{a}}\, b^{2}\right ) \left (\cosh ^{4}\left (f x +e \right )\right ) \sinh \left (f x +e \right )+\left (-4 \sqrt {-\frac {b}{a}}\, a^{2}+13 \sqrt {-\frac {b}{a}}\, a b -9 \sqrt {-\frac {b}{a}}\, b^{2}\right ) \left (\cosh ^{2}\left (f x +e \right )\right ) \sinh \left (f x +e \right )+\sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \left (3 \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a^{2}-16 \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a b +16 \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b^{2}+8 \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a b -16 \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b^{2}\right ) \left (\cosh ^{2}\left (f x +e \right )\right )+\left (\sqrt {-\frac {b}{a}}\, a^{2}-2 \sqrt {-\frac {b}{a}}\, a b +\sqrt {-\frac {b}{a}}\, b^{2}\right ) \sinh \left (f x +e \right )}{3 \sqrt {-\frac {b}{a}}\, \cosh \left (f x +e \right )^{3} \sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}\, f}\) \(385\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sinh(f*x+e)^2)^(3/2)*tanh(f*x+e)^4,x,method=_RETURNVERBOSE)

[Out]

1/3*((-1/a*b)^(1/2)*b^2*cosh(f*x+e)^6*sinh(f*x+e)+(-3*(-1/a*b)^(1/2)*a*b+7*(-1/a*b)^(1/2)*b^2)*cosh(f*x+e)^4*s
inh(f*x+e)+(-4*(-1/a*b)^(1/2)*a^2+13*(-1/a*b)^(1/2)*a*b-9*(-1/a*b)^(1/2)*b^2)*cosh(f*x+e)^2*sinh(f*x+e)+(cosh(
f*x+e)^2)^(1/2)*(b/a*cosh(f*x+e)^2+(a-b)/a)^(1/2)*(3*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a^2-16*
EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a*b+16*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b^2
+8*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a*b-16*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*
b^2)*cosh(f*x+e)^2+((-1/a*b)^(1/2)*a^2-2*(-1/a*b)^(1/2)*a*b+(-1/a*b)^(1/2)*b^2)*sinh(f*x+e))/(-1/a*b)^(1/2)/co
sh(f*x+e)^3/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(3/2)*tanh(f*x+e)^4,x, algorithm="maxima")

[Out]

integrate((b*sinh(f*x + e)^2 + a)^(3/2)*tanh(f*x + e)^4, x)

________________________________________________________________________________________

Fricas [F]
time = 0.12, size = 25, normalized size = 0.08 \begin {gather*} {\rm integral}\left ({\left (b \sinh \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \tanh \left (f x + e\right )^{4}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(3/2)*tanh(f*x+e)^4,x, algorithm="fricas")

[Out]

integral((b*sinh(f*x + e)^2 + a)^(3/2)*tanh(f*x + e)^4, x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)**2)**(3/2)*tanh(f*x+e)**4,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3005 deep

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(3/2)*tanh(f*x+e)^4,x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Evaluation time:
0.73Error: Bad Argument Type

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\mathrm {tanh}\left (e+f\,x\right )}^4\,{\left (b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(e + f*x)^4*(a + b*sinh(e + f*x)^2)^(3/2),x)

[Out]

int(tanh(e + f*x)^4*(a + b*sinh(e + f*x)^2)^(3/2), x)

________________________________________________________________________________________